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Generalized Langevin Equations with 
Time-Dependent Temperature 
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A generalized Langevin equation describing the evolution of a particle in a heat 
bath with a time-dependent temperature is derived for a simple model. The 
temperature is controlled by introducing dissipative terms in the dynamical 
equations of the heat bath particles. The Langevin equation contains a term that 
is specifically associated with the variation of the temperature. 
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1. I N T R O D U C T I O N  

In recent years, mesoscopic equations have been used to describe a variety 
of systems with a time-dependent temperature. This approach has proved 
to be useful to study, for instance, the evolution of a system under 
continuous cooling or heating. In particular, several models for the 
dynamics of glasses have been formulated in this way. (1) 

Almost without exception, in most of the models it is assumed that the 
equation describing the time evolution of the system at constant 
temperature also holds when the temperature changes in time. One simply 
has to formally replace in the equation the constant value by the given 
function. 

The purpose of this paper is the derivation of a Langevin equation 
describing the motion of a system interacting with a heat bath whose 
temperature changes in time, although the functional form of its distribu- 
tion function is always that of equilibrium. Microscopic derivations of 
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Langevin equations for systems coupled to a heat bath have been the 
subject of extensive work, and a great deal is now known about Brownian 
motion at constant temperature. However, it seems that the case of a 
changing temperature has not been much explored, and therefore the study 
of simple examples like the one presented here may be useful. 

Our work is rooted in a derivation due to Zwanzig (2'31 of nonlinear 
Langevin equations. Zwanzig's work is particularly interesting because it 
holds for arbitrary nonlinear systems. His assumptions refer to the heat 
bath and to the interactions between the system and the heat bath, 
although they are sufficiently general to allow for the derivation of 
Langevin equations with both additive and multiplicative noises. (4) 

The approximation we will follow here can be applied to the whole 
class of models considered by Zwanzig, (2) but for the sake of simplicity we 
will restrict ourselves to a specific system that was also discussed by 
Zwanzig to illustrate his formal results. 

2. D E S C R I P T I O N  OF T H E  M O D E L  

Let us first present the model as it was formulated by Zwanzig for the 
case of constant temperature. We consider a particle interacting with a 
bath of N harmonic oscillators and subject to a potential U(Q), where Q 
represents the position of the particle. The mass and the momentum of the 
particle are denoted by M and P, respectively. The position and the 
momentum of the j th  oscillator are qj and &, and its frequency is (o1.. The 
Hamiltonian of the system is assumed to be of the form 

H(Q,p,{qj},{pj})=Hs(Q,P)+Hb(Q,{qj},{pj}) (1) 

where 

p2  
Hs(Q, P)= ~--~+ U(Q) (2) 

is the Hamiltonian of the isolated particle, and 

(q, 1 1 2 _ ~j___~ 
Hb(Q, {qj}, {P j} )=Z~P~  +2~cOj  

J J 

(3) 

is the sum of the bath and interaction Hamiltonians. The parameters 7j 
characterize the coupling between the system particle and the bath of 
oscillators. 
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The above Hamiltonian leads to the following dynamical equations for 
the position and momentum of the particle: 

dO(t) M - e(t) (4) 
dt 

dP( t ) ( Q( t )'~ 
dt U'(Q(t))+~,Tj qj(t)-Tj---~: j (5) 

J 

while the corresponding equations of motion for the heat bath are 

dqj(t)=pj(t) (6) 

d (qj(t) Q(t)'~ ) (7) 

By formally solving Eqs. (6) and (7) and introducing the result into 
Eq. (5), Zwanzig (2~ was able to derive an exact generalized Langevin 
equation for the motion of the particle. Furthermore, the equation becomes 
approximately Markovian in a well-defined limit. Moreover, for N ~ ~ the 
effect of the particle on the distribution function of the oscillators becomes 
negligible. Therefore, if one assumes that the bath was initially at 
equilibrium with a given temperature, this temperature remains well 
defined and constant along the evolution of the system. This foltows 
directly from the fact that the canonical distribution with constant 
temperature is a stationary solution of the Liouville equation of the 
isolated bath, which corresponds to make 7:= 0 in Eqs. (6) and (7). 

If one wants the bath to have a time-dependent temperature, it is clear 
that one has to modify its evolution equations. The energy cannot be a 
constant of motion when the interactions with the particle are neglected. 

Let us consider the bath in the absence of the system particle. We 
assume that the position and momentum of the j th  bath particle obey the 
equations 

d ~qj= p: +~(t)qj (8) 

d 
dt p: = -co~ qj +/~(t) pj (9) 

where ~(t) and/~(t) are time-dependent parameters to be determined later. 
Equations (8) and (9) deserve some comments. It is easily seen that 

they cannot be derived from a Hamiltonian, except for the particular case 
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e(t) = -flU). Our point of view is that they are the effective dissipative 
equations of the bath when its temperature is controlled by some kind of 
external mechanism. Of course, they are not the only possible choice, 
although they seem to be the simplest one. In the Appendix it is shown 
how the same effect can be obtained by means of a time-dependent 
Hamiltonian, but the equations are much more complicated. More will be 
said about this point at the end of the paper. 

To determine e(t) and fl(t), we will use the evolution equation for the 
distribution function of a system of particles that obey Eqs. (8) and (9). 
Taking into account that they do not interact, we can restrict ourselves to 
the one-particle distribution function defined as 

f(q/, pj, t )=  (6(qj-qj(t)) 3(pj- pj(t)) ) (10) 

Here the angular brackets denote average with a given probability 
distribution for q/(0) and &(0). Use of Eqs. (8) and (9) leads to 

-~f(q/ pj, t ) =  -pj-~q/f(qj, pj, t)+oo~q/vr+f(q/' pj, t) 

t ~ -c~(t) ~-~/(qgf(q/,pj, t))-fl( )~&(pjf(qj,&,t)) (11) 

We want to choose e(t) and fl(t) in such a way that Eq. (11) admits 
as a time-dependent solution 

fo(q/, &, t) = ~ I 1 ] 2r&,T(t) exp 2kuT(t) (pZ+coZq 2) (12) 

where kB is the Boltzmann constant and T(t) is a given function of t. 
Substitution of Eq. (12) into Eq. (11) yields 

d 

) \ ksT \kBT 1 (13) 

This relation becomes an identity for 

l d  
~(t) =//( t)  = ~ ~ In T(t) (14) 

Our model can already be fully specified. We consider a particle in a 
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bath. The evolution equations of the particle are given by Eqs. (4) and (5), 
and those for the bath are 

d 
dt qj= ps + ~(t)q J (15) 

d (qs-7 Q ~  +~(t)p) (16) 
7 pj = -co~ ' cot } 

where ~(t) is defined by Eq. (14). The part of the equations associated with 
the isolated motion of the particle and also with the interaction between 
the particle and the bath is the same as in Zwanzig's model. It can be 
derived from a time-independent Hamiltonian. It is only the dynamics of 
the bath particles what has been modified by introducing a term that is 
going to be responsible for the change of the temperature in the bath. 

3. GENERALIZED LANGEVIN EQUATION 

To derive a generalized Langevin equation, we follow Zwanzig's 
procedure. (2) The formal solutions of Eqs. (15) and (16) can be written as 

�9 - ? ~  Q(0)] cos R(t) q j ( t ) = ~  R(t)Q(t)+ [qj(0) co2 %t 

+pj(0) sin cost- ?s dz cos[coj(t-  z)] ~ (R(r) Q(r)) (17) 
(.oj (o 2 

and 

with 

R(t) p j ( t )=-co j[q j (O)-~  Q(O)] sin co;t + pj(O) cos coil 

+ ?s dzsin(oj(t-z)] ~(R('c) Q(z)) 
coj 

(18) 

M dQ(t) = P(t) (20) 
dt 

de(t) , ( r ( t )  ~1~ 
dt U'(Q(t))- ~o dt' ( ( t -  t') \ T(t')J 

FP(C) I ~lnr(t')]+r(t) •  2Q(C) (21) 

R(t) =/\|T(O)| 1/2 (19) 
\ r(t)} 

When these expressions are introduced into Eqs. (4) and (5), the 
desired generalized Langevin equation is obtained: 
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where F(t) depends on the initial conditions and also on the function T(t), 

F(t)=R(t) 127j lq j (O)-~ j  
J 

+ R(t) ~ ~ 7j pj(0) sin co/ (22) 
j % 

and the friction coefficient ((t) is given by 

((t)= V ~ cos cojt (23) 
7 �9 co} 

Now an initial ensemble of states is introduced in order to specify the 
statistical properties of the bath-dependent term, F(t). We assume that for 
given values of Q(0) and P(0) the bath was at equilibrium in the presence 
of the particle. In other words, we consider a probability distribution of the 
form 

W(Q(O), P(O), {qj(0)}, {pj(0)}) oc go(Q(0), P(0)) exp 

q~ is an arbitrary function. In this ensemble 

(F(t)) = 0  

and 

(F(t)  F(t') ) = kB[T(t) T(t')] ,/2 ~(t - t') 

Hb 
kBT(O) 

(24) 

(25) 

(26) 

Equation (26) is a fluctuation-dissipation theorem for our model, 
relating the fluctuating force and the transport coefficient. From Eqs. (22) 
and (24) it follows that F(t) defines a Gaussian process, and therefore 
Eqs. (25) and (26) completely determine its statistical properties. 

Of course, if the temperature is taken to be constant, one recovers 
Zwanzig's results in ref. 2. The effect of a time-dependent temperature 
shows up in several ways. First, the two-time correlation function of the 
fluctuating force contains the square root of the product of the 
temperatures at both times, Eq. (26). Second, the friction term also has a 
time-dependent temperature factor. Finally, the most significant modifica- 
tion is the appearance of a new term in the generalized Langevin equation. 
This term has the same structure as the usual friction term, but the position 
of the particle appears instead of its momentum. In addition, it is related 
to the change of the logarithm of the temperature along the evolution of 
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the particle. On the other hand, the friction coefficient r is not affected 
by the change of the temperature. 

Next, let us see what happens in the Markovian approximation. We 
consider a distribution of frequencies of the bath particles of the Debye 
type. We also take ?i=N-~/2~ for all i. Then, for values of the cutoff 
frequency coa big enough, one finds 

where 

r = 2~ 0 6(t) (27) 

3~72 
~o- 2co3 (28) 

When Eq. (27) is introduced into Eq. (21), the result is the Markovian 
equation 

dP(t) U,(Q(t))_~o(P_~) 1 d ) 
d~- - 2 O(t) dt In T(t) + F(t) (29) 

with the Gaussian force F(t) satisfying 

(F(t))  = 0  

( F(t) F(t') ) = 2k B T(t)r 6(t - t') (30) 

Equation (30) has the form that one could expect for the fluctuation- 
dissipation theorem in the Markovian limit, once the theorem is known for 
the constant-temperature case. Nevertheless, the presence of the term 
proportional to Q(t) in Eq. (29) seems difficult to guess from the equation 
at constant temperature. 

Since the fluctuations in Eq. (29) are Gaussian and delta-correlated, 
the conditional probability W(Q, P, tlQ', P', t') for the particle position 
and momentum can be easily shown to obey the Fokker-Planck equation 

a 
Ot W(Q, P, t l Q', P', t') 

- M~Q+ u ( o ) - ~ o O ~ l n  --ap 

Q P 9 2 ]  
+ ~ o - ~ + k B T ( t ) ~ o ~ 5  W(Q,P, t lQ' ,P' , t ' )  (31) 

It is easily verified that in the limit N ~ ~ the bath is well described 
by a distribution function of the equilibrium type with a time-dependent 
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temperature T(t). This is due to the fact that the effect of the particle on 
the distribution function of the bath becomes negligible. Therefore, T(t) 
can be interpreted as the actual temperature of the bath. 

One needs to be careful if this model is used to describe heating 
processes. The deterministic equations, neglecting fluctuations, associated 
with Eqs. (20) and (29) are 

M ~-t = P (32) 

and 

-d~ = - U  (Q)-~o - ~ Q ~ t l n  T (33) 

If T(t)> 0, Eqs. (32) and (33) can lead to runaway solutions, as is the 
case, for instance, when U'(Q) = 0. Of course, this is a very specific feature 
of our system, and it is not to be expected to hold in more realistic models. 

4. F INAL R E M A R K S  

The main result of this paper is Eq. (21), describing the time evolution 
of the momentum of a particle in contact with a bath whose temperature 
changes in time. An important point is to what extent the form of Eq. (21) 
depends on the specific form we have assumed for the dynamical equations 
of the bath particles in order to control the temperature. From the deriva- 
tion in the main text and also from the Appendix it seems clear that the 
results are very much influenced by this choice. But, at the same time, it 
seems also true that in all cases new terms appear in the Langevin equation 
as compared with the constant-temperature case. 

Also, the effect on the particle due to heating or cooling the bath 
strongly depends on the kind of coupling between both of them. Therefore, 
the conclusions with our model cannot be trivially extended to more 
realistic or complicated systems. In any case, we think that this model may 
be useful for pointing out the difficulties that can appear if one tries to 
extend mesoscopic equations to describe the evolution of a system with a 
time-dependent temperature. 

A P P E N D I X  

In this Appendix we show that the temperature of the bath can also 
be controlled by means of the introduction of a time-dependent term in the 
Hamiltonian given by Eq. (1). If we denote this term by 

~ A(q:, p/, t) (a.1) 
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the dynamical equations for the position and momentum of the j th  particle 
of the bath (in absence of the system particle) are 

dt q1 = PJ + A(qi, pj, t) (A.2) 

~tpi= -co~qj-  A(qj, pj, t) (A.3) 

The corresponding evolution equation for the distribution function is 

~tf(qs, t)= - -~qjf(qj, t) Ps, P j, 

+(coZqj+OA\ c~ 

When the distribution function given by Eq. (12) is required to be a 
solution of Eq. (A.4), one gets the following first-order partial differential 
equation: 

PJ-~-qJ-coJqJ-~PJPJ+ 2 OA 1 [p~ +co~q2_ 2kBT(t)] d ln T(t )=0 (A.5) 

This equation 
method. The general solution is 

A(qj, pj, t) =--1 In T(t) k ,  T(t) - - ~ co 
coj 

qjco~ /p~ 1 . .~ 
x arcsin (p2 + co/q~)l/2 + ~ ~ - +  5 coj q) ) 

is linear and it can be solved by the characteristics 

(A.6) 

where q~ is an arbitrary function. In this way, we have the general expression 
of a Hamiltonian that is able to control the temperature of the bath, keeping 
it at equilibrium. Nevertheless, the equations of motion for the heat bath 
particles in presence of the system particle seem hard to solve, even with 
the simplest possible choice for 4. 
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